Query & search registries

This guide walks through all the ways of finding metadata records in LaminDB registries.

# !pip install lamindb
!lamin init --storage ./test-registries
Hide code cell output
→ connected lamindb: testuser1/test-registries

We’ll need some toy data.

import lamindb as ln

# create toy data
ln.Artifact(ln.core.datasets.file_jpg_paradisi05(), description="My image").save()
ln.Artifact.from_df(ln.core.datasets.df_iris(), description="The iris collection").save()
ln.Artifact(ln.core.datasets.file_fastq(), description="My fastq").save()

# see the content of the artifact registry
ln.Artifact.df()
Hide code cell output
→ connected lamindb: testuser1/test-registries
! no run & transform got linked, call `ln.track()` & re-run
! no run & transform got linked, call `ln.track()` & re-run
! no run & transform got linked, call `ln.track()` & re-run
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3 bNLnbYJUyDPoLgiy0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-25 17:11:36.082420+00:00 1
2 pj5PUSKlWUdFwLKO0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-25 17:11:36.068579+00:00 1
1 KYwM91IDsJGYF0AE0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-25 17:11:35.916471+00:00 1

Look up metadata

For registries with less than 100k records, auto-completing a Lookup object is the most convenient way of finding a record.

For example, take the User registry:

# query the database for all users, optionally pass the field that creates the key
users = ln.User.lookup(field="handle")

# the lookup object is a NamedTuple
users
Hide code cell output
Lookup(testuser1=User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-11-25 17:11:31 UTC), dict=<bound method Lookup.dict of <lamin_utils._lookup.Lookup object at 0x7f3f3f74be90>>)

With auto-complete, we find a specific user record:

user = users.testuser1
user
Hide code cell output
User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-11-25 17:11:31 UTC)

You can also get a dictionary:

users_dict = ln.User.lookup().dict()
users_dict
Hide code cell output
{'testuser1': User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-11-25 17:11:31 UTC)}

Query exactly one record

get errors if more than one matching records are found.

# by the universal base62 uid
ln.User.get("DzTjkKse")

# by any expression involving fields
ln.User.get(handle="testuser1")
Hide code cell output
User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-11-25 17:11:31 UTC)

Query sets of records

Filter for all artifacts created by a user:

ln.Artifact.filter(created_by=user).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 KYwM91IDsJGYF0AE0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-25 17:11:35.916471+00:00 1
2 pj5PUSKlWUdFwLKO0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-25 17:11:36.068579+00:00 1
3 bNLnbYJUyDPoLgiy0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-25 17:11:36.082420+00:00 1

To access the results encoded in a filter statement, execute its return value with one of:

  • .df(): A pandas DataFrame with each record in a row.

  • .all(): A QuerySet.

  • .one(): Exactly one record. Will raise an error if there is none. Is equivalent to the .get() method shown above.

  • .one_or_none(): Either one record or None if there is no query result.

Note

filter() returns a QuerySet.

The ORMs in LaminDB are Django Models and any Django query works. LaminDB extends Django’s API for data scientists.

Under the hood, any .filter() call translates into a SQL select statement.

.one() and .one_or_none() are two parts of LaminDB’s API that are borrowed from SQLAlchemy.

Search for records

Search the toy data:

ln.Artifact.search("iris").df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 pj5PUSKlWUdFwLKO0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-25 17:11:36.068579+00:00 1

Let us create 500 notebook objects with fake titles, save, and search them:

transforms = [ln.Transform(name=title, type="notebook") for title in ln.core.datasets.fake_bio_notebook_titles(n=500)]
ln.save(transforms)

# search
ln.Transform.search("intestine").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
9 ZHMfNJBtYpIz0000 None True Oogonium IgG3 classify intestine classify. None None notebook None None None None None 2024-11-25 17:11:45.909788+00:00 1
26 W5H8YHFHE8eU0000 None True Eosinophil Granulocyte Vas deferens rank IgG3 ... None None notebook None None None None None 2024-11-25 17:11:45.911421+00:00 1
27 LBhKeZJPkOLS0000 None True Study Tanycytes IgG1 intestine IgG2 IgG3 IgG3 ... None None notebook None None None None None 2024-11-25 17:11:45.911517+00:00 1
43 hvdqLBTXrMuK0000 None True Double-Bouquet Cells IgM investigate IgM intes... None None notebook None None None None None 2024-11-25 17:11:45.913064+00:00 1
50 JPaYbJfKEVDa0000 None True Igg2 efficiency intestine cluster. None None notebook None None None None None 2024-11-25 17:11:45.913733+00:00 1

Note

Currently, the LaminHub UI search is more powerful than the search of the lamindb open-source package.

Leverage relations

Django has a double-under-score syntax to filter based on related tables.

This syntax enables you to traverse several layers of relations and leverage different comparators.

ln.Artifact.filter(created_by__handle__startswith="testuse").df()  
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 KYwM91IDsJGYF0AE0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-25 17:11:35.916471+00:00 1
2 pj5PUSKlWUdFwLKO0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-25 17:11:36.068579+00:00 1
3 bNLnbYJUyDPoLgiy0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-25 17:11:36.082420+00:00 1

The filter selects all artifacts based on the users who ran the generating notebook.

Under the hood, in the SQL database, it’s joining the artifact table with the run and the user table.

Comparators

You can qualify the type of comparison in a query by using a comparator.

Below follows a list of the most import, but Django supports about two dozen field comparators field__comparator=value.

and

ln.Artifact.filter(suffix=".jpg", created_by=user).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 KYwM91IDsJGYF0AE0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-25 17:11:35.916471+00:00 1

less than/ greater than

Or subset to artifacts smaller than 10kB. Here, we can’t use keyword arguments, but need an explicit where statement.

ln.Artifact.filter(created_by=user, size__lt=1e4).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 pj5PUSKlWUdFwLKO0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-25 17:11:36.068579+00:00 1
3 bNLnbYJUyDPoLgiy0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-25 17:11:36.082420+00:00 1

in

ln.Artifact.filter(suffix__in=[".jpg", ".fastq.gz"]).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 KYwM91IDsJGYF0AE0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-25 17:11:35.916471+00:00 1
3 bNLnbYJUyDPoLgiy0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-25 17:11:36.082420+00:00 1

order by

ln.Artifact.filter().order_by("-updated_at").df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3 bNLnbYJUyDPoLgiy0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-25 17:11:36.082420+00:00 1
2 pj5PUSKlWUdFwLKO0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-25 17:11:36.068579+00:00 1
1 KYwM91IDsJGYF0AE0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-25 17:11:35.916471+00:00 1

contains

ln.Transform.filter(name__contains="search").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
5 tgqUcNpcZz7t0000 None True Visualize efficiency IgD research Alpha cell. None None notebook None None None None None 2024-11-25 17:11:45.909403+00:00 1
10 AmQPAhL0SO1n0000 None True Igy research IgG2 Vas deferens IgG3 study clas... None None notebook None None None None None 2024-11-25 17:11:45.909883+00:00 1
16 AIyS26lebf7M0000 None True Igg2 study research. None None notebook None None None None None 2024-11-25 17:11:45.910461+00:00 1
28 wrmk3kh8FlKj0000 None True Igg3 rank Descending colon research investigat... None None notebook None None None None None 2024-11-25 17:11:45.911612+00:00 1
31 grbxlnXd8P1O0000 None True Research IgG2 IgY. None None notebook None None None None None 2024-11-25 17:11:45.911899+00:00 1

And case-insensitive:

ln.Transform.filter(name__icontains="Search").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
5 tgqUcNpcZz7t0000 None True Visualize efficiency IgD research Alpha cell. None None notebook None None None None None 2024-11-25 17:11:45.909403+00:00 1
10 AmQPAhL0SO1n0000 None True Igy research IgG2 Vas deferens IgG3 study clas... None None notebook None None None None None 2024-11-25 17:11:45.909883+00:00 1
16 AIyS26lebf7M0000 None True Igg2 study research. None None notebook None None None None None 2024-11-25 17:11:45.910461+00:00 1
28 wrmk3kh8FlKj0000 None True Igg3 rank Descending colon research investigat... None None notebook None None None None None 2024-11-25 17:11:45.911612+00:00 1
31 grbxlnXd8P1O0000 None True Research IgG2 IgY. None None notebook None None None None None 2024-11-25 17:11:45.911899+00:00 1

startswith

ln.Transform.filter(name__startswith="Research").df()
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
31 grbxlnXd8P1O0000 None True Research IgG2 IgY. None None notebook None None None None None 2024-11-25 17:11:45.911899+00:00 1
142 UBWaetizyz270000 None True Research Melanocyte intestine IgG2 Natural kil... None None notebook None None None None None 2024-11-25 17:11:45.930271+00:00 1
151 d14HQohvRQr60000 None True Research efficiency IgG3. None None notebook None None None None None 2024-11-25 17:11:45.931103+00:00 1
276 47PsZtGiPtav0000 None True Research IgA IgG3 candidate rank IgE Outer roo... None None notebook None None None None None 2024-11-25 17:11:45.949869+00:00 1
351 Cdiz4WlQ1Hqy0000 None True Research Descending colon Pharynx result Outer... None None notebook None None None None None 2024-11-25 17:11:45.960375+00:00 1
367 5T8nS8nuZItc0000 None True Research Spermatogonium cell IgM Descending co... None None notebook None None None None None 2024-11-25 17:11:45.961874+00:00 1
372 KjyMlg9XbaCg0000 None True Research IgM IgY IgD. None None notebook None None None None None 2024-11-25 17:11:45.962336+00:00 1
378 G7jWMrPE0p3i0000 None True Research IgG3 result IgG2. None None notebook None None None None None 2024-11-25 17:11:45.962889+00:00 1
398 7jMFYUBRb5IP0000 None True Research Double-bouquet cells research investi... None None notebook None None None None None 2024-11-25 17:11:45.968376+00:00 1

or

ln.Artifact.filter(ln.Q(suffix=".jpg") | ln.Q(suffix=".fastq.gz")).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 KYwM91IDsJGYF0AE0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-25 17:11:35.916471+00:00 1
3 bNLnbYJUyDPoLgiy0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-25 17:11:36.082420+00:00 1

negate/ unequal

ln.Artifact.filter(~ln.Q(suffix=".jpg")).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 pj5PUSKlWUdFwLKO0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-25 17:11:36.068579+00:00 1
3 bNLnbYJUyDPoLgiy0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-25 17:11:36.082420+00:00 1

Clean up the test instance.

!rm -r ./test-registries
!lamin delete --force test-registries
Hide code cell output
• deleting instance testuser1/test-registries